Exam questions: TKO_3109 Advanced Algorithms

(answers in english)

15-January-2018

IMPORTANT: answer 4 out of the following 5 questions.

- (1) (10p) Given a graph G=(V,E) with edge costs c_e associated with each edge $e \in E$. The edge costs are allowed to be negative; we assume that there are no negative cycles in the graph. Give a *dynamic programming* algorithm that finds the length of the shortest path from any node to a target node $t \in V$. How to recover an actual shortest path from the resulting table?
- (10p) Describe the *Maximum Flow Problem* and outline the Ford-Fulkerson algorithm for finding the maximum flow in the network (no need for proofs).
- (4) (10p) A set of paths in a graph G = (V, E) are said to be edge disjoint, if their edge sets are disjoint. The edge disjoint paths problem is to find the maximum number of edge disjoint paths from node $s \in V$ to node $t \in V$. Give an algorithm for this problem using flow networks. Prove that the resulting paths are edge disjoint, and their number is the maximum possible.
- (4) (10p) NP-Completeness: The Independent Set Problem asks if there is an independent set of size at least k in a graph G = (V, E). A subset of vertices $S \subseteq V$ is independent if no two vertices of S are joined by an edge from E. Prove that $3\text{-}SAT \leq_p Independent Set$.
 - (10p) NP-Completeness: Show that the Hamiltonian Cycle problem is NP-Complete.