Exam questions: TKO_3109 Advanced Algorithms

(answers in english)

12-Febtruary-2018

IMPORTANT: answer 4 out of the following 5 questions.

- (1) (10p) In the Subset Sum problem we are given a set of n non-negative numbers $\{w_1, w_2, ..., w_n\}$, and a bound W. The goal is to select a subset S of these numbers so that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} w_i$ is maximized. Write a dynamic programming algorithm that solves this problem.
- (2) (10p) Sequence alignment: given two strings on the same alphabet, find the minimum cost alignment between these using a dynamic programming algorithm. The penalty of aligning a symbol with a gap is $\delta > 0$ and for aligning two different symbols x_i and y_i is $\alpha_{x_iy_i}$.
- (3) (10p) Describe the *Maximum Flow Problem* and outline the Ford-Fulkerson algorithm for finding the maximum flow in the network (no need for proofs).
- (4) (10p) Bipartite Matching Problem: given a graph G = (V, E) where nodes are partitioned into two sets X and Y, so that all edges $e \in E$ have one end in X and one in Y. A matching M is a subset of edges $(M \subseteq E)$ such that each node appears in at most one edge in M. Find the largest possible matching in G using network flows.
- (5) (10p) NP-completeness: Given a graph G = (V, E) and a bound k, the k-coloring problem asks if the vertices of the graph can be colored with at most k colors without conflict (adjacent nodes are not colored with the same color). Prove that deciding if a graph is 3-colorable is NP-complete.