Designing Object Oriented Software

Exam I
Mon May 7, 2007 / Ma 7.5.2007

It s allowed to use the following book during the examination:

Robert C. Martin:
Agile Software Development: Principles, Patterns, and Practices,
Prentice-Hall, 2003,

Any other extra materials (e.g. lecture notes, slides, extracts, coples, or handouls) are not
allowed.

s Each question glves at most 10 exam points. Because the digressions from the topic will
reduce (he recelved exam points, please, stick (o the subjccl, » There are three questions to be
answered. « To recelve the exam points You are expecled to include Your name, student number
and the course utle {(*Designing Object Oriented Software”) on the returned paper sheets.

1. Let us consider the most widely used object-oriented programming languages (OOPLs) such
as C++ or Java, These OOPLs provide the concepts ‘interface’ and ‘class’ that can be used for
describing the modular design of a software system both at definition ime and at runtime.
However, the ‘interface’ and ‘class' mechanisms as such are not sufficient for defining mod-
ules completely. Discuss what ather modularity properties these kinds of OOPLs should
provide or support more directly. Hint: Base Your arguments, for example, on the modularity
concepts presented by Robert C. Martin and Bertrand Meyer.

2. Design patterns Bridge, State, and Strategy have similar class diagram structures but thetr
Intentions are quite different. In what kind of use contexts cach ol these patlern {s more
sullable than the other ones? Describe the use contexts of these patterns in general terms
and concretize Your comparison by giving some examples,

3. Let us assume that we have a software (Sw) system called Appl that is bulld from three
packages AppiState, ApplRendering. and AppiControl as presented in Flgure 1. This pack-
aging structure s derived from the following rationales.

MORE ON THE NEXT PAGE —

©2007 Harrl Hakonen !

ApplState I
vishor (PSS Goserver

(4

Visior | \ Otserver
L] L L}
] ! stato state % g
) | chai query % s |
\ ; LA ‘
Voo grate
’) ey LT nnm% 1
M | I -
ApplControl] / i Apleenderingl '
¥
g requast A
! | D |/[fe=an=essss >
]
R 1 — =
s, user K
. 4 ,-‘f acl!onp.\ ¥
N . v\ perception
Receivet "+ - - - - - lvoker " ¥
«Command 3
User

Figure 1: The organization of the packages {n system Appl. A dashed arrow depicis a depen-
dency (the attached text in italics describes an example for it), A dashed oval denotes a design
pattern (the attached lines bind its collaborating roles (o the concrete interfaces).

» AppliState: The package defines how to encapsulale and preserve the state dala of the
system. Here, ‘stale data' means the Information that define the current state of Appl
at the system level ({.e. not the member variables in the class definitions). This package
enables us to replace the existing state Implementation, for example, by a database.
Also, we can relocate the whole state data to a remofe computer in future. |[Analogous
example: In a weather monltoring system [WMS) this kind of package would include
the classes that keep up the wealher measurements and uphald the user accounts.]

AppiRendering: The responsibility of Lhis package is to define how to render the nee-
essary state data to the users of the system. Furthermore, it encapsulates and hides
all the user Interface (Ul) issues, Now, the rest of the system does not need (o know if
it is used via a graphlcal window or via a command prompt terminal. This allows us
to adapt the system to many operating systems and platforms. |Analogous example:
In a WMS this kind of package includes the classes that handle the user Interaction
interface.]

AppiControl: This package defines the control logic (L.e. the behaviour) of the system,
Also, the state data Is changed only by the objects instantiated from Lhe classes of
this package. For example, the system’s integrity rulea and error recovery logic are
located here. This makes It easier to have many levels of product features; the more
the customer pays the more advanced fealures are delivered. [Analogous example: In a
WMS this kind of package includes the classes that drive the measurements and their
timings, aulomatically calibrate the instruments, and alert the faults,)

Figure 1 outlines how the objects from the different puckages collaborate with each others,
For example, Appiendering objects can be observers of ApplSiate objects, ApplControl
objects can hook Lhelr functionality into AppiRenderng objects by Command pattern, and
data objects of ApplState ean be operated from ApplControl objects by Visitor mechanism.
NaTE, that the classes S, T, V, W, C, and D are presented only for illustratlon purpose; the
true classes and Interfaces of these packages are not shown.

Fvaluate the packaging structure of Appl system at Jeast from the following perspectives:
Sw reusabllity, Sw release policy, change in Sw requirements, and concurrent Sw devel-
opment fone team dedicated to one package). Identify the most serious problem {n the
packaging structure and solve it under the following restriction: We want to keep packages
ApplState, AppiRendering, and ApplControl — each has their uwn solid justification in the
forthcoming evolulon of Appl.

@©2007 Ham Hakonen 2

