ETT_2026 Digitaalinen Signaalinkäsittely Exam

March 04, 2019

Students are allowed to use only calculator. The necessary equations and references are given in the last two pages of this exam paper.

- 1. Describe the following. (5 p)
 - a) The applications of digital signal processing.
 - b) Specify some of the basic purposes of filters and give type of applications where the filters are needed.
 - c) Give list of applications where adaptive signal processing is used and what are its benefits compared to non-adaptive signal processing?
 - d) The applications of two-dimensional filters.
 - e) What are the benefits of multrate signal processing and give example applications where multirate signal processing is applied.
- 2. Design a lowpass FIR filter that satisfy the given specifications using window based design method: $\omega_p = 0.3\pi$, $A_s = 50$ dB, $\omega_s = 0.5\pi$, and $A_p = 0.1$ dB. (8 pt)
 - a) Use an appropriate fixed window to obtain a minimum order linear-phase filter and determine the coefficients of the impulse response of the filter and plot it.
 - b) What will be the order of the filter if it uses Kaiser window?
- 3. The impulse response of a system is given as follows $H(z) = z^{-4} z^{-2} + 3z + 1$ (4 pt)
 - a) If the input is $x(z) = 1/1-z^{-1}$, what is the output in frequency domain?
 - b) Determine the corresponding frequency response of the system at frequency ω = 0.25*2 π .
- 4. The system function of a discrete-time LTI system is as follows (8 pt)

$$H(z) = \frac{z^2 + 3z + 1}{z^2 + 0.3z + 0.8}$$

- a) Determine the time-domain difference equation of the system.
- b) Draw direct form II structure of the system.
- c) Calculate the output of the system when the input is $x(n) = 3 + \cos(0.5\pi n)$
- d) Is the system stable, why?

N DFT
$$(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$
, for $k = 0, 1, 2, ..., N-1$

Amplitude spectrum
$$A_k = \frac{1}{N}|X(k)| = \frac{1}{N}\sqrt{(Real[X(k)])^2 + (Imag[X(k)])^2}$$

Phase spectrum
$$\varphi_k = tan^{-1} \left(\frac{Imag[X(k)]}{Real[X(k)]} \right)$$

Power spectrum $P_k = \frac{1}{N^2} |X(k)|^2$

Twiddle matrix
$$W_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$

$$A_{\rm p} = 20 \, \log_{10} \left(\frac{1 + \delta_{\rm p}}{1 - \delta_{\rm p}} \right) > 0 (\approx 0)$$
 $A_{\rm s} = 20 \, \log_{10} \left(\frac{1 + \delta_{\rm p}}{\delta_{\rm s}} \right) > 0 (\gg 1)$

$$\delta_{\mathrm{p}} = rac{10^{A_{\mathrm{p}}/20} - 1}{10^{A_{\mathrm{p}}/20} + 1}$$

$$\delta_{\mathrm{s}} = rac{1 + \delta_{\mathrm{p}}}{10^{A_{\mathrm{s}}/20}}$$

Lowpass filter impulse response

$$h_{lp}(n) = \frac{\sin[\omega_c(n-0.5M)]}{\pi(n-0.5M)}$$

Highpass filter impulse response

$$h_{hp}(n) = \frac{\sin[\pi(n-0.5M)]}{\pi(n-0.5M)} - \frac{\sin[\omega_c(n-0.5M)]}{\pi(n-0.5M)}$$

Bandpass filter impulse response

$$h_{bp}(n) = \frac{\sin[\omega_{c2}(n - 0.5M)]}{\pi(n - 0.5M)} - \frac{\sin[\omega_{c1}(n - 0.5M)]}{\pi(n - 0.5M)}$$

Window name	Side lobe level (dB)	Approx. $\Delta \omega$	Exact $\Delta \omega$	$\delta_{ m p} pprox \delta_{ m s}$	A _p (dB)	$A_{\rm S}$ (dB)
Rectangular	-13	$4\pi/L$	$1.8\pi/L$	0.09	0.75	21
Bartlett	-25	$8\pi/L$	$6.1\pi/L$	0.05	0.45	26
Hann	-31	$8\pi/L$	$6.2\pi/L$	0.0063	0.055	44
Hamming	-41	$8\pi/L$	$6.6\pi/L$	0.0022	0.019	53
Blackman	-57	$12\pi/L$	$11\pi/L$	0.0002	0.0017	74

Bartlett (triangular)

$$w[n] = \begin{cases} 2n/M, & 0 \le n \le M/2, M \text{ even} \\ 2 - 2n/M, & M/2 < n \le M \\ 0, & \text{otherwise} \end{cases}$$

Hann

$$w[n] = \begin{cases} 0.5 - 0.5\cos(2\pi n/M), & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

Hamming

$$w[n] = \begin{cases} 0.54 - 0.46\cos(2\pi n/M), & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

Blackman

$$w[n] = \begin{cases} 0.42 - 0.5\cos(2\pi n/M) + 0.08\cos(4\pi n/M), & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

Kaiser

$$M = \frac{A - 8}{2.285\Delta\omega} \qquad \beta = \begin{cases} 0, & A < 21 \\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21), & 21 \le A \le 50 \\ 0.1102(A - 8.7), & A > 50 \end{cases}$$